
KSMIE Journal, Vol. 10, No. 3, pp. 259~264, 1996 

Mixed Balancing Truncation for Better Impulse Response 

Kwang Young Jeong* 
(Received June 15, 1995) 

259 

Two methods of balancing reduction are presented. The first is to truncate the states corre- 

sponding to smaller Hankel singular values of the reciprocal balanced system. The second is to 

choose one of some balancing methods, that has the least impulse response error by reducing one 

order at a time. The relation between the grammians of the balanced system and those of the 

reciprocal system is derived. 
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1. Introduction 

Recent control literature shows that an impor- 

tant role is played by the balanced realization 

truncation order reduction techniques in model 

and controller reduction. In this realization, 

controllability and observability grammians are 

equal and diagonal. The diagonal elements are 

called Hankel singular values. Moore (1981) 

obtained a reduced-order model by retaining 

states corresponding to larger Hankel singular 

values. Kabamba (1985) and Davidson (1986) 

:suggested alternate criteria in which the states that 

,contribute significantly to the impulse response 

norm of the original system are retained in the 

reduced-order model. 

Reciprocal transformations suggested by Fer- 

nando and Nicholson (1983) and Sreeram and 

Agathoklis (1989) were developed to give better 

approximation in the low frequency range, in 

their examples, these methods gave smaller 

impulse response error as well as smaller steady 

state error than Kabamba's method. Generaliza- 

tions of the reciprocal transformations were 

shown by Muscato and Nunnari  (1994) and 

Clapperton et al. ([994). 

In this paper, two new reduction methods are 
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presented, which are motivated by the following 

two observations. First, depending on the prob- 

lem itself, Moore's truncation criteria may give 

better impulse response than Davidson's criteria. 

Secondly, Sreeram and Agathoklis adopted 

Davidson's criteria for truncation in the recipro- 

cal balanced system. 

The first proposed method is based on tbrming 

the reciprocal transfer function, computing the 

reduced model according to Hankel singular 

values and reciprocating it back to get the 

required reduced order model. This; idea of reduc- 

ing a reciprocal transfer function and reciprocat- 

ing back the reduced order model, is common in 

frequency domain techniques of model reduction. 

(Sreeram and Agathoklis, 1989) 

The second proposed method derives reduced- 

order models according to Moore's, Davidson's, 

Sreeram and Agathoklis's and the first proposed 

method by truncating one state. A reduced-order 

model that has the least impulse response error is 

selected at this step. Restarting from this model, 

the next reduced-order model is derived by reduc- 

ing one order at a time until a desired order 

reduced-order model is found. 

The major difficulty of" the second proposed 

method is a large amount of computing time. In 

order to apply it, it is necessary to find two 

balanced systems at each step; one for the current 

system, the other for its reciprocal system. The 

relation between the grammians of the balanced 
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system and those of the reciprocal system will be 

derived to reduce the computing time of the sec- 

ond method. 

2. Balancing Reduction Methods 

In this section, the three reduction methods 

based on the balancing coordinates for a linear 

time-invariant system are briefly described. 

Let us suppose a stable linear time-invariant 

system (A,  B, C), which is described as :  

~"- A x  + Bu  
v Ca:, (I)  

where x ~ R  ~, z t ~ R '  and ~,,~R2 The system is 

assumed to be controllable and observable over 

[0, or),  which means that the controllabil i ty 

grammian 

I~'~.--TeAtBBreA~tdt (2) 
o 

and the observability grammian 

Wo=TeA~'CrCeA~dt (3) 
0 

are both nonsingular. It is well known that these 

grammians satisfy the following gyapunov equa- 

tions. 

A l ~ +  I ~ . A r + B B  ~ = 0  (4) 

A r l ~ +  W o A + C T C  0 (5) 

The given system is transformed into a bal- 

anced system, where controllabil i ty and obser- 

vability grammians are equal and diagonal 

(Moore, 1981). 

?r - A s + [h,  
y = Cot ( 6 )  

where 

and 

T - 1 A T ,  B =  T ~t3, C = C T  (7) 

17V~= 1/17o = d i a g  
( 0-12 0~ 2 2 ~ " ' 'O'r2~ Ur+12" ' '~  ~n 2) 

( 0 " 1 2 ~ U 2 2 2  --- 6 r 2 ) ) O ' r + l  2-.-  2 0 " n 2 ) 0 )  (8) 
The states in the balanced coordinates are 

equally controllable and observable. The quan- 
tities a, 2, known as Hankel singular values, are 

invariants and reflect the input /output  impor- 

tance of the states. The reduced-order model is 

obtained by truncating the states corresponding to 

smaller Hankel singular values, i.e., 

Ar=[ sr 0 ]A[ Ir  01 
/ ~ r = [  A 0  ]/3 and (~r= (f'[ Z0 t (9) 

where Ir  is an identity matrix with r columns and 

y r o w s .  

Kabamba (1985) and Davidson (1986) suggest- 

ed different truncation criteria based on the sys- 

tem impulse response. Consider the system 

impulse response norm of Eq. (I) 

II g [ I f - - f e t e  dt (10) 
0 

where g(t)  is the unit impulse response, i.e., 

g = C e A t B  (11) 

This norm can be expressed in terms of the 

grammians. 

]1 g I]'f = tr fo ggT dt= tr( C'7C W,,) 

= t r ( / 3 B r  ~5) (12) 

By representing the norm in the balanced coor- 

dinates 

II g 1122 t r (CrCH~)= t r ( / 3 / ) r l~ , )  
n zt n 

= Y], c,-20,.2 = ~, b,.2 (7, z E d ,  (13) 
t'=l ~=1 s 

where c,- and b, are called balanced gains, the 

square of which are ith diagonal components of 

CTC and BB r, respectively. Since the contribu- 

tion of the states to the impulse response depends 

on the quantity d, rather than a, .z , states corre- 

sponding to larger d,. are retained in the reduced 

model. Therefore, if the truncated parts in this 

method correspond to smaller Hankel singular 

values, this method generates the same reduced- 

order model as Moore's�9 

Sreeram and Agathoklis (1989) proposed 

another method using the reciprocal transforma- 

tion. First, the reciprocal system (A, /~, C) is 
found using the following transformation with an 

assumption that A is non-defective: 

A = A  1 B = A - 1 B ,  C = _  C ( 1 4 )  

For  an S1SO system, the transfer function of 

this reciprocal system is the same as that of the 

original system with coefficients reversed. Second- 
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ly, the balanced system (A,  B, C) of this recipro- 

cal system is derived. Thirdly, the reduced-order 

model ( A t ,  B~, C~) of this reciprocal system is 
obtained by truncating states with smaller d~. 

Finally, the reduced-order model (A, ,  B,-, C,-) of  

the original system is found by transforming back 

to the original coordinates; i.e., 

A , -= f l , - 1 ,  B , - : / l r  1B, 

and C,- = -- C~ (15) 

3. Reciprocal Balancing Truncation 

The impulse response error (Hyland and Bern- 

stein, 1985) is defined as 

- ! l  g -  .~r Ib 
e - -  T 2 r  112-- (16) 

where g and g-,. are the impulse responses of the 

original model (A, [3, C) and reduced-order 

model (A,-, ]~r, C,.), respectively. The square of 

the numerator of Eq. (16) is expanded as follows : 

H g - v ,  II:, ~ II z I1~ ~ ~ II g ,  H / -  2tr~cg~/-r]dt 
0 

= tr( C ~C LI~) + tr( C, 7 C,. g,{,) 

- Err( C,. I/C? ) (17) 

where [/l~,, is the controllabili ty grammian of the 

reduced-order model and V is the solution of the 

following algebraic Lyapunov equation. 

A , . V +  I/A 7 +/3~Br=:O (18} 

If the error measure is I1 g ll~-[I ~, Ib, BTG 
(Balancing Truncation considering Balanced 

Gains of Kabamba, 1985) always gives smaller 

error than BT (Balancing Truncation of Moore, 

1981) as explained in the previous section. For 

the usually used error given in Eq. (16), however, 

any explicit decision can not be made. Experience 

shows that it depends on the problem itself 

whether BTG is better than BT or not. An exam- 

ple that BTG is better than BT is treated by 

Kabamba (1985) while a counterexample is found 

by Sreeram and Agathoklis (1989). 

Similarly, since truncation of  RBTG (Recipro- 

cal Balancing Truncation considering Balanced 

Gains of Sreeram and Agathoklis,  1989) is based 
on balanced gains multiplied by Hankel singular 

values, another truncation method based only on 

Hankel singular values of the reciprocal system is 

proposed. Hereafter, this method is called RBT 
(Reciprocal Balancing Truncation) whose algor- 

ithm is as follows. 

Algorithm 

( i ) Obtain the reciprocal system ( A  1, A - 1 B ,  

C) for the given system (A, B, C). 

( i i )  Find the balanced system (A,  B, C) of 

(A 1, A - I B ,  - C). 

(iii) Obtain the reduced-order model (AF, Br, 

(~)r) by truncating the parts corresponding to 

smaller Hankel singular values. 

( iv)  Obtain the reciprocal model (fir,  B,-, C,-) 

as (A,. -1, A,- lj),., _ Cr). 

The only difference between RBT and RBTG is 

the truncation criteria. 

4. Mixed Balancing Truncation and 
Grammian Calculation 

4.1 Mixed balancing truncation 
The main idea of MBT (Mixed Balancing 

Truncation) is to truncate one state at a time by 

choosing one of the four methods, i.e., BT, BTG, 

RBTG and RBT, until a desired order reduced 

model is found. Suppose that we want to derive 

an r th  order model from nth order system. First, 

( l ~ - l ) t h  order models can be found using the 

four methods. At this step, this method selects the 

one that has the least impulse response error. 

From the next step, the same procedure is applied 

until the r th  order model is obtained. 

Since our purpose is to get a reduced model 

that has the least impulse response error, MBT 

chooses a method that has the least impulse 

response error at each truncation. Although this 

choice may give good results, this does not guar- 

antee that the final reduced model has less 

impulse response error than applying a single 

method. Numerical examples show that the choice 

based on the impulse response error gives compet- 

itive results and that the other choice may give 

better results. 

4.2 Grammian calculation 
The major difficulty of MBT is the amount of 

computing time required to calculate reduced- 



262 Kwang Young Jeong 

order models at each order. Since we use four 

methods, we need to compute the balancing trans- 

formation at each order because even though a 

system is balanced, the reciprocal system is not 

usually balanced. As Laub (1980) pointed out, 

the majority of the computing time for balancing 

transformation is to derive the controllability and 

observability grammians. Thus, if the relation of 

the grammians of one system and its reciprocal 

system is known, the computing time of the mixed 

method is greatly reduced. 

For a given system (A, /3, C') , the reciprocal 

system (A,  [3, (2) is obtained from the following 

transformations : 

A A % / 2 = A  ]B, C" . . . .  C (19) 

The controllability and observability gram- 

mians of the given system satisfy Eqs. (4) and (5) 

and those of the reciprocal system satisfy the 

following equations. 

A ITS. § fi%A~ + H/3'  - 0 (20) 
ATIU}4 ff~]/T+ (_77C" 0 (21) 

The following relation between W(. and [Y~2: is 

derived from Eqs. (4), (19) and (20). 

g~. = l{~. (22) 

By applying Eq. (19) into Eq. (21), we get 

A rIVo + IiT~A 1+ C~C: (}  (23) 

If we replace IT(, by A " W o A  in Eq. (23), we get 

Eq. (5). That is to say, the relation between ~-~,, 

and ll'(, is 

[Ii ,= A r ['1~,/1 (24) 

The uniqueness of I7I~ in Eq. (21) is guaranteed if 

Eq. (5) has a unique solution. That is to say, if 

A,(A)+ A.AA)~O 

then 

A,{/~T)+2j(A)~0 for all i and j 

where 2i(A) is the ith eigenvalue of A. Since the 

eigenvalues of ff~ are the reciprocals of those of 
A, this completes the proof. 

5.1 

5. Numerical Examples 

Example 1 

0 i 0 0 0 0 

(} 0 1 1 0 0 

{} 0 (} 0 1 0 

0 0 0 0 {} 1 

-23 - 7 2 - 6 1  -61 39-11 

x+( 0 

0 

0 u 

0 

1 

?/--[ 28 39 12 1 0 ]~" 

For the fifth order SISO system of Wilson and 

Mishra (1979) as shown above, the impulse 

response errors of the reduced models are 

obtained in Table 1. BT and BTG give better 

results than RBTG for the third and first order 

reduced models while RBT is best among all 

single methods for the second order reduced 

model. In any case, MBT gives the best results for 

this example. 

5.2 Example 2 
For the two input two output system with eight 

state variables of Ozcetin et al. (1989), the 

impulse response errors of the reduced models are 

shown in Table 2. For the 7th and 6th order 

reduced models, RBT and RBTG give better 

results than BT and BTG. For the 4th, 3rd and 

2nd order reduced models, however, BT and BTG 

give better results than RBT and RBTG. MBT 

gives competitive results in general, although it 

gives a little larger error than BT and BTG for the 

4th and 2nd order reduced models. 

5.3 Example 3 
For the two input two output system with 

twelve state variables of Hung and MacFarlane 

Table 1 Impulse response errors of Example I 

Order of the 
[ BT BTG RBTG 

reduced model / 
3 ! 0.00708 0.00708 0007,7  

2 0.19537 0.19537 0.88308 l 

t 0.60168 0.60168 0.88103 [ 

RBT 

0.00717 

0.18007 

1.00248 

MBT 

0.00708 

0.18006 

0.60064 



Mixed Balancing Truncation for Better Impulse Response 263 

Table 2 Impulse response errors of Exam')le 2 

Order of the 
BT M BT 

reduced model 

7 0.03042 0.02874 

3 

2 

6 0.08300 

5 0.08362 

0.08746 

0.21634 

0.56369 

f BTG RBTG RBT 

0.06055 0.04289 0.02874 

0.05941 0.04689 0.04689 

0.09182 0.07996 0.28808 

0.08746 ] 0.10819 0.29676 

0.21634 0.58477 0.32390 

0.56369 0.64902 0.81173 

0.04689 

0.07996 

0.09010 

0.21599 

0.56404 

Table 3 Impulse response errors of Example 3 

Order of the 
BT MBT2 

reduced model 

7 0.09043 0.05858 

6 0.11514 0.06328 

5 0.12954 

0.36873 

0.36799 

BTG RBTG RBT MBT 

0.05362 0.05858 0.06219 0.05362 

0.09438 0.06328 0.08352 0,07759 

0.14714 0.08305 0.08305 0.08499 

i 0126578 0+ 15527 ~ 0,20667 +U0.13947 
0.27316 0.25551 0.71460 I 0.24830 ] 

0.08305 

0.13821 

0.24763 

(1982, p164), the impulse response errors of the 

reduced models are shown in Table 3. BTG is 

best among all single methods for the 7th order 

reduced model while RBTG is better than any 

other single method for the 6th, 5th, 4th and 3rd 

order reduced models. 

For the 7th, 4th and 3rd order reduced models, 

MBT is better than any single method. For the 6th 

and 5th order reduced models, MBT is better than 

BT and BTG but worse than RBTG. This means 
that MBT does not always give better results than 

any single method though it usually gives good 

results. 

A small modification can be made for MBT 

since the 6th order RBTG model has the smallest 

error among all methods. After RBTG is used to 

obtain the 6th order reduced model, MBT is 

applied to this model by reducing one order at a 

time by selecting one of four single methods. As 

shown on the final column represented as MBT2 

in Table 3, this modification is better than MBT 

for the 6th to 3rd order reduced models. 

5.4 Discussions 

Generally, the errors of reduced models become 

larger as the number of the retained states is 

smaller. We can find the contradictions in our 

examples that the higher reduced models are not 

good enough to give larger errors l:han the lower 

order models, if we compare the errors of the 2rid 

and 1st order RBTG models of example 1, the 5th 

and 4th order BTG models of example 2, the 4th 

and 3rd BT models of example 3 and the 6th and 

5th RBT models of example 3. A similar example 

for the BT model was suggested by Gawronski 

and Williams (1989). This can be: explained by 

realizing that BT, BTG, RBT and RBTG only 

order the states based on Hankel singluar values 

and balanced gains, not on the impulse response 

erroFs. 
MBT, though it uses one of four methods, 

usually follows the general trend lhat the higher 

order model is good enough to give', smaller errors 

than the lower order model better than four 

methods. This is due to the fact that the selection 
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of one method at each truncation is based on the 

impulse response error. 

6. Conclus ions  

Two balancing reduction methods are present- 

ed. RBT truncates the states of  the reciprocal 

balanced system corresponding to smaller Hankel 

singular values. MBT truncates one state at a time 

by selecting one of BT, BTG, RBTG and RBT, 

that gives the least impulse response error. The 

relation between the grammians of the balanced 
system and those of the reciprocal system has been 

found, thereby relieving the major computer bur- 

den of MBT. 

Numerical examples show that MBT generally 

gives good impulse responses, although it does 

not always give better results than single methods 

and that a little modification of  MBT may give 

better impulse response. It follows that MBT can 

serve as one of good methods in model reduction 

area because it usually gives better or competitive 

results compared with BT, BTG, RBT and 

RBTG. 
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